Solar Energy Storage Problem May be Solved in New Single-System Technology

The University of Texas at Austin:  Generating power from the sun isn’t the problem. The technology has been there for decades. Storing that power efficiently, however, has been a challenge.

That’s why the Department of Energy has awarded $3 million to engineering researchers at The University of Texas at Austin to overcome the Achilles’ heel of the solar power story since Day One: how to store its energy.  

To date, most major solar energy systems are bulky and expensive, with inefficient storage capacity. Energy coming from existing solar power systems must be housed in storage systems outside of the generators that create the power. In other words, two separate systems are required to ensure successful operation.

But experts from UT’s Cockrell School of Engineering have developed a way to integrate solar power generation and storage into one single system, effectively reducing the cost by 50 percent. The UT project will develop the next generation of utility-scale photovoltaic inverters, also referred to as modular, multifunction, multiport and medium-voltage utility-scale silicon carbide solar inverters.

Collectively, the combined technologies are known as an M4 Inverter – their main function being the conversion of the direct current output of solar panels to medium-voltage alternating current, which eliminates the need for a bulky and expensive low-frequency transformer.

Electrical and computer engineering professor Alex Huang, who directs the Semiconductor Power Electronics Center in the Cockrell School and works with the UT Center for Electromechanics, is the lead principal investigator for this DOE-funded project. He believes the M4 Inverter will create efficiencies in a variety of ways.   

“Our solution to solar energy storage not only reduces capital costs, but it also reduces the operation cost through its multifunctional capabilities,” Huang said. “These functionalities will ensure the power grids of tomorrow can host a higher percentage of solar energy. By greatly reducing the impact of the intermittence of solar energy on the grid and providing grid-governing support, the M4 Inverter provides the same resilience as any fossil-fuel-powered grid.”

One such additional functionality is the ability to provide fast frequency control, which would prevent a solar-powered grid from experiencing blackouts on days when large cloud cover might obstruct solar farming.  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Canadian Solar - HiKuBlack - Black Backsheet & Frame (Mono)

Canadian Solar - HiKuBlack - Black Backsheet & Frame (Mono)

Aesthetic appearance for residential systems: With black backsheet & black frame, Power range 380 ~ 405 W, Low power loss in cell connection. Enhanced reliability: · Low temperature coefficient (Pmax): -0.34 % / °C, LID LeTID less than 2.0%, Lower hot spot temperature, Better shading tolerance.